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The Marginal Ice Zone includes wide areas covered by dispersed ice floes in which 
wave conditions are significantly affected by the ice. When the wind blows from the 
solid ice pack, towards the open sea, growing waves are scattered by the floes, and 
their spectral characteristics modified. To further understand this problem, a model 
for the evolution of wind waves in a sparse field of ice floes has been developed. The 
sea state is described by a two-dimensional discrete spectrum. Time-limited wave 
growth is obtained by numerical integration of the energy balance equation using the 
exact nonlinear transfer integral. Wave scattering by a single floe is represented in 
terms of far-field expressions of the diffracted and forced potentials obtained 
numerically by the Green function method. The combined effect of a homogeneous 
field of floes on the wave spectrum is expressed in terms of the Foldy-Twersky 
integral equations under the assumption of single scattering. The results show a 
strong dependence of the spectrum amplitude and directional properties on the ratio 
of the ice floe diameter to the wavelength. For a certain range of this parameter, the 
ice cover appears to be very effective in dispersing the energy ; the wave spectrum 
rapidly tends to isotropy, a tendency which prevents the normal growth of wave 
energy and the decrease in peak frequency. Therefore, in the Marginal Ice Zone, the 
ability of an offshore wind to generate a significant wave field is severely limited. 

1. Introduction 
The development of a wind wave spectrum and the nature of the energy terms 

involved are now understood well enough, in the case of an open ocean, to be able to 
provide fairly good wave forecasting (e.g. Janssen, Komen & Voogt 1984 ; Golding 
1983). As an extension to the existing theory, it is interesting to examine the 
situation where waves are generated in the presence of a partial ice cover as 
encountered in the Marginal Ice Zone (MIZ). 

The MIZ is defined as that part of the seasonal ice cover which is close enough to 
the open ocean boundary to be affected by its presence. It constitutes an active 
region of dynamic exchanges between sea ice, water and the atmosphere, of which 
one aspect has not yet been properly investigated, that is wave generation by a wind 
blowing over the ice field towards the open sea. The presence of scattered ice floes 
partially covering the sea surface certainly affects the nature of the generated waves, 
but to what extent? Is the generation process inside the MIZ simply irrelevant or 
does it lead to waves of significant amplitude by the time the open, ice-free sea is 
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reached ? Must wave generation in the MIZ be included in wave climate studies and 
forecasts Z 

Most of the previous efforts to study wave-ice interactions in the MIZ have been 
concentrated on the propagation and attenuation of sea waves and swell entering the 
ice field (e.g. Wadhams 1973, 1978; Wadhams et al. 1986). For this purpose the 
theory of flexural gravity waves has been used, where the energy of the waves is 
coupled between an ice layer and the water below it (e.g. Wadhams 1986; Squire 
1984). The propagation of these waves and their dispersive behaviour was first 
analysed for the simplest case of a uniform semi-infinite floating ice sheet, and then 
extended to wave propagation in a field of discrete floes by representing the floes as 
successive bands of infinite lateral dimension (Wadhams 1975). In the latter 
approach, each row transmits and reflects a certain fraction of the incident energy 
dictated by the transmission properties of the flexural gravity waves on the edge of 
the band. Although this theory leads to acceptable attenuation rates in most studied 
cases, it is inadequate. Firstly, as suggested by Robin (1963), the analysis should be 
different when the horizontal dimension of the ice floes is small compared to the 
wavelength, in which case, the bending of the floes can be neglected and the floes 
visualized as rigid floating plates. Also, apart from assuming that typical irregular 
floes scatter energy only directly backwards, i t  also ignores diffraction and the wave- 
making effect of the floes. A more realistic model must describe the ice cover as 
discrete floes of typical size and shape and attempt to determine the entire scattered 
wave field due to such floes. To this end, work has been done to obtain detailed 
measurements of the motion of realistic ice floes in ocean waves (Squire 1983). Using 
two-dimensional numerical methods developed in naval architecture, he obtained 
estimates of amplitudes of motion in the different modes of oscillation for individual 
floes of various shapes. These results can be used to improve the ice-band model 
previously described but there still remains a need for a more accurate thrce- 
dimensional representation in which the scattered wave field could be fully analysed. 

All the above mentioned studies have concentrated on the attenuation of ocean 
waves entering the ice field. However, in this paper, we attempt to investigate the 
unresolved problem of wave generation in the MIZ itself by suggesting a way in 
which the partial ice cover may affect the evolution of the wave spectrum. The 
scattering of the waves is expected to increase the directional spread about the mean 
direction. The influence of this new energy distribution on the complex nonlinear 
energy exchange mechanism among waves is a fundamentally interesting aspect of 
the proposed work. From a more practical point of view, a better knowledge of the 
wave generation in the MIZ would improve forecasting of wave and ice conditions in 
a region where these are major environmental hazards, by helping to  determine the 
effective fetch. The results could also be useful in the prediction of the ice edge 
position and the degree of inhomogeneity in the ice cover. 

The next two sections give a detailed description of the model, including a 
complete derivation of the parameterization of wave-ice interactions. The computed 
wave-induced motion of the floes and the associated scattering amplitudes are 
presented in $4. Section 5 describes the numerical simulation method, and the results 
are given in $6 together with their implications on wind wave evolution inside the 
MIZ . 
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2. The energy balance equation 
A sea state is commonly represented in terms of its two-dimensional wavenumber 

spectrum, F(k) ,  which is the Fourier transform of the covariance of the surface 
displacement 7 at points separated by a distance r :  

Using the linear dispersion relation, 

(2nf )2  = gk tanh (kh) ,  ( 2 )  

(with f the frequency, g the gravitational constant and h the water depth), the 
corresponding directional frequency spectrum, F( f ,  O), with 0 the direction of wave 
propagation, can be simply related to th.e wavenumber spectrum by 

For an ice-free situation, in deep water and in the absence of currents, the 
spectrum evolves in time t and space x according to the energy balance equation 
(Hasselmann 1960) : 

aF(f, ; x, t ,  + C,( f, 8)  - VF(f, 8 ; x, t )  = Sin + x,, + S,,, 
at (4) 

where Cg(f ,8)  is the group velocity, Sin, the rate of energy input from the 
atmosphere, Sas the dissipation rate, mostly through wave breaking, and S,, the 
energy transfer due to nonlinear interactions among spectral components. In the 
presence of ice, this energy balance equation will have to be modified to take into 
account the effects of ice floes on the wave field. 

For wave generation by the wind to be of significance, the fraction of the area 
covered by ice, fi, has to be relatively small (<25%, say; this study will provide a 
more quantitative estimate). Thus, the region of interest for this study is restricted 
to the outer portion of the ice pack where the ice field is usually composed of 
randomly distributed small floes with no preferred shape or orientation (e.g. 
Wadhams 1986). 

In the model, the sea surface is assumed to be covered uniformly and sparsely by 
a random distribution of rigid ice floes. Each mass of floating ice endeavours to follow 
the displacement of the supporting water surface within limits imposed by its rigidity 
and inertia. It re-radiates incident wave energy, slightly diminished by dissipative 
processes in the water and within the ice itself. This scattering effect tends to 
decrease the energy content of the wave field and, more importantly, to cause a 
spectral redistribution, spreading out the energy over a broader range of directions. 
The object of this work is to  quantify the modifications due to the partial ice cover 
on the growing spectrum i.e. to modify the energy terms of (4) for the effect of the 
ice and to add a new term, Site, responsible for the extra dissipation and 
redistribution of energy. 

Various models have been developed to obtain the wave growth for a full 
directional wave spectrum by numerical integration of (4), or some approximation 
thereof. They differ primarily in the form assumed for the source functions (Sin, S,, 
and S,,) for which a variety of formulations exist, based on theoretical and 
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observational grounds (e.g. Allender et al. 1985). The specific form of the input and 
dissipation terms used in this study is that described by Hasselmann & Hasselmann 
(1985a, b ) .  

The input source function, Sin, takes the form proposed by Snyder et al. (1981) on 
the basis of direct measurements of the work done by the atmospheric fluctuations 
on the waves, 

lo if(--I) u, cos 0 < 0, 

where pa and pw are the densities of air and water, respectively, U, the wind speed 
a t  5 m, 0 the angle between the wind vector and the wave propagation direction, 
w = 21cf the wave angular frequency and c the phase velocity. 

The less well-known dissipation term, S,,, follows the general form suggested by 
Hasselmann ( 1974) for the dissipation due to  small-scale white-capping processes. He 
showed that S,, was to be quasi-linear in the wave spectrum and proportional to  the 
square of the frequency, with a coefficient which depends only on integral spectral 

Here h is the integral wave-steepness parameter, 

where 

and 

The parameter h,, = 4.57 x lo-, is the theoretical value of h for a Pierson-Moskowitz 
spectrum. The constant C, determining the overall level of dissipation, has been 
taken from Komen, Hasselmann & Hasselmann (1984) who considered the energy 
balance for well-developed ocean waves and obtained C = 3.33 x lop5. 

The nonlinear term, Snl, represents the energy exchange between different wave 
components interacting weakly among themselves, first demonstrated by Phillips 
(1960). Although these energy transfers are described as ‘very weak’, this process 
plays an important role in the evolution of the spectrum. Wave-wave interactions 
occur among a set of four spectral components when the resonant conditions are 
satisfied, namely : 

k , f k ,  = k,+k,, (7) 

and w,+w, = w,+w,, (8) 

where the wavenumber, in deep water, is related to the angular frequency by the 
dispersion relation k, = w,2/g. 

Hasselmann (1962) derived an expression for the transfer of energy due to 
nonlinear interactions by carrying a perturbation analysis to fifth order in a small 
parameter, the wave slope. From his results, the net rate of change of energy for one 
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spectral component at wavenumber k, can be computed via the Boltzmann integral 
expression 

where n,(ki) = F(ki)/wi is the action density and the coupling coefficient u is a 
complicated sixth-order homogeneous function of the wavenumbers involved. 
Equation (9) describes the net energy transfer rate at a given wave component k, due 
to interactions with all combinations of four waves satisfying the resonance 
conditions (7) and (8) represented by the two Dirac 6 functions. Because of the 
extensive computing time required to evaluate the multiple integral of (9), various 
approximations to the exact expression are commonly used in operational wave 
models (e.g. Allender et aZ. 1985). Nevertheless, since those parameterizations of S,, 
have been fitted to standard spectral distributions, they exhibit basic restrictions in 
their treatment of the nonlinear transfer, and cannot be expected to provide 
adequate transfer rates for an unusual spectral shape like that anticipated when 
waves develop in the presence of ice floes. Thus, in this study, the S,, term is 
computed using the full Boltzmann transfer integral (9). An accurate and fast 
technique, developed by Hasselmann &, Hasselmann (1981, 1985a), enables a large 
number of S,, computations to be carried out, as required for this work. The method, 
based on a symmetrical treatment of the interactions, is one to two orders of 
magnitude more efficient than previous ones. This is mainly achieved by exploiting 
the invariance of the coupling coefficient cr with respect to permutations of the 
wavenumbers, and the principle of detailed balance by which the computation of the 
change in action density for one wavenumber gives also the identical action changes 
(except for a simple sign rule) for the other three components participating in a given 
interaction. 

Now that the three energy terms of (4) have been satisfactorily defined, the effect 
of a partial ice cover may be introduced. First, because waves can neither be 
generated by the wind nor dissipated by the usual breaking mechanisms in that 
fraction fi of the sea surface covered by ice, both Sin and S,, are reduced by a factor 
(1 -ff) from their ice-free values given above. There remains the determination of the 
new term, Site, which parameterizes the scattering and extra dissipation of energy by 
the ice. 

3. Modelling the partial ice cover 
The determination of the additional source term, Site, consists of analysing the 

scattering of a random wave field described by its energy spectrum, P(f, B),  incident 
on a random array of ice floes. Assuming that each discrete component of the 
spectrum interacts independently with the floes, two aspects of the problem may be 
distinguished. First, the ability of a single floe to scatter a certain fraction of the 
incident energy associated with a single spectral component is considered in $3.1. 
Secondly, the average wave field due to scattering of this wave by the whole array 
of ice floes is computed. The directional scattered spectrum, for each frequency, is 
then obtained by summing the contributions from the incident and scattered waves 
of all directions ($3.2). Finally, the dissipation of energy due to the presence of the 
partial ice cover is evaluated ($3.3). 
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3.1. Scattering of a plane wave by a single Jloe 

There are two distinct approaches to solving the hydrodynamic problem of a floating 
body in waves: Morison's equation and potential flow theory (e.g. Garrison 1978). 
These two procedures have their own limits of applicability. The former considers the 
flow past a body with velocity and acceleration such as would occur at its centre if 
it  were not present and, therefore, is valid for objects which are small in relation to 
the wavelength. On the other hand, when the body size to wavelength ratio, D I L ,  is 
sufficiently large ( >0.2) ,  the incident wave undergoes important scattering (or 
diffraction) and the more explicit potential theory is required to describe the flow. 
Finally, both approaches are limited by the value of the wave height to wavelength 
ratio, H / L ,  steep waves being affected by nonlinear effects (with (H/L)max z 0.14 in 
deep water). 

In  the region studied, the outer part of the MIZ, both ocean and wind act on the 
ice cover to form heavily rafted and ridged small floes (e.g. Bauer & Martin 1980). 
These are represented, in the model, by truncated cylinders of diameter 15 < D < 50 
m and draft 1 < d < 4 m. The geometry of one individual floe can not be fully 
described by such a simple shape. Sharp corners, for example, would cause flow 
separation, increasing form drag. However, the overall effect of the ice field on the 
energy distribution of the growing waves should be properly derived using this 
simple representation. Within that given range of floe diameters and for the expected 
values of wavelength in the early stage of this short fetch situation (L  < 60 m), the 
value of the parameter D / L  remains in the region of validity of the potential flow 
theory. Therefore, in this work, potential flow theory is used rather than the Morison 
equation. 

Assuming the fluid incompressible and the flow irrotational, the problem reduces 
to the determination of a velocity potential, @, which satisfies the Laplaee equation, 
V2@ = 0. The function @ is defined here such that u = V@, with u the fluid velocity 
vector. The analysis is based on the assumption that the amplitude of the wave is 
small. Through linearization, the scattering process can be decomposed and treated 
as the sum of two distinct mechanisms : the fluid motion produced by a body forced 
to oscillate in otherwise still water and the interaction of a regular wave with a 
restrained body (e.g. Sarpkaya & Isaacson 1981). Because of its symmetry relative 
to the vertical axis, a floating cylinder will be forced by an incident plane wave to 
oscillate in three degrees of freedom only: surge, back and forth in the direction of 
the incident wavenumber k ;  heave, up and down; and pitch, about an axis parallel 
to the wave crests. For each mode, the resulting small periodic motion, of angular 
freqency w ,  may be expressed in the form tbe-iwt where tb is the complex amplitude 
for the mode of motion b, with b = 1 , 2  and 3 corresponding to surge, heave and pitch 
respectively (figure 1) .  In linearizing the problem, the velocity potential, also 
harmonic, can be obtained by superposition of 5 components : 

where $,, is the undisturbed part of the incident wave potential, q54 the diffracted 
potential, c$b, for b = 1, ..., 3, the forced potentials and R e (  ) indicates the real 
part. 
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FIGURE 1. Cylindrical floe of radius a = and draft d in water of depth h. The three modes of 
motion have amplitudes of gb with subscript : 1 for surge, 2 for heave and 3 for pitch. Here (2, y, z )  
form a Cartesian coordinate system and ( r ,  8, z )  the corresponding cylindrical coordinate 
system. 

The potential associated with an incident plane wave, of amplitude i H ,  in water 
of finite depth, is usually given as 

igH cosh [k(z  + h)] eitZ 
20 cosh (kh) 

$o = -- 
3 

where x is measured in the direction of wave propagation and z vertically upwards 
from the still water level. It is more convenient, here, to use a cylindrical coordinate 
system with r measured radially from the z-axis and 8 counterclockwise from the 
positive z-axis (figure 1). The incident potential then takes the form 

where 

and Jl is the Bessel function of the first kind of order 1. 
The complex potentials of (10) must satisfy the Laplace equation and the usual 
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linearized boundary conditions at the seabed, free surface, far field, and the condition 
to be applied on the equilibrium surface of the floating body, X,, 

3 

= C -iiwtbnb onS,, (13) 
b= 1 

where n is the unit vector in the direction normal to So, directed outward from the 
body and v, the magnitude of the velocity of the surface in that direction, given 
by V ,  = Re (v, ePiot). V ,  is the sum of the surge, heave and pitch components with 
nl = Y&,, n2 = n, and n3 = zn,-xzn, where n,, ny and n, are the direction cosines 
of n with respect to the x-, y- and x-directions respectively. 

This boundary-value problem is solved using the Green function method. In the 
usual way (e.g. Wehausen & Laitone 1960), the unknown potentials, $ b ( ~ ) ,  are 
expressed in terms of a surface distribution of sources 

where fb(x) is a source distribution function a t  X = (X, Y ,  Z ) ,  a point on So, and 
G(x,Xj a Green function for the general point x due to a source of unit strength 
a t  X .  

The source strength distribution function, f b ( X ) ,  and the amplitude of motion, tb, 
for each mode b ,  are obtained using a method described by Isaacson (1982) and of 
which the broad outlines are given here. Because of the body’s axisymmetry, various 
functions may be expressed as Fourier series in the angle about the body’s vertical 
axis, 8, reducing considerably the computational effort required from that for bodies 
of arbitrary shape. In  finite depth, the appropriate Green function that satisfies the 
Laplace equation, the boundary conditions on the ocean floor and a t  the free surface, 
and the radiation condition, first derived by John (1950), was given in a symmetrical 
form by Fenton (1078) : 

G = C G,, (2-6, ,)~0~[1(8-0)],  (15) Yrn  1 z=o m=o 

where S,, is the Kronecker delta, 

G,, = 4C, cos b, (2 + h)]  ~ 0 s  b, (2 + h)]  K ,  

p; + V 2  
(,u;+VZ)h-v’ 

c, = 

and the cylindrical coordinates (R, 0 , Z )  correspond to  the point ( X ,  Y ,  2)  on the 
surface So. I ,  and K ,  are the modified Bessel functions of order E of the first and second 
kinds, respectively, with the upper of the alternative arguments used if r R and the 
lower otherwise. Also, v = w 2 / g  and ,urn are the roots of 

,urn h tan (p, h)  = - vh, (16) 

with po the imaginary root (p, = -ilc), and, for nz. 2 1 ,  ,urn the positive real roots in 
ascending order. 

The source strength distribution function of (14), for each mode of oscillation b, is 
expanded as: 
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where s(r ,  z )  is the distance measured along the body contour in a vertical plane. The 
coefficients fbl(s) are determined by the boundary condition (13) applied on so, the 
equilibrium body contour, discretized into a finite number N of short segments, with 
fb , ( s )  assumed uniform over each segment. The various results, presented in $4, were 
calculated using 15 < N < 30. The body motion amplitudes, &,, are then obtained 
from the equation of motion for a freely floating axisymmetric body. These two 
parameters, fbz(s )  and tb, had to be computed for each particular floe shape used in 
the model. 

Once the source strength distribution functions and the amplitudes of motion, for 
each floe configuration, have been solved for by the method described above (see 
Isaacson (1982) for more details on the procedure), an expression for the potential Q, 
a t  any point in the fluid can be derived. Substituting (15) and (17) into (14), each 
scattered (forced and diffracted) potential can be written as 

Expressing dS as R d o d s ,  and integrating with respect to 0, (18) becomes 

L 1 - ~  J s ,  \m-0 1 

Introducing in (19) the discretization of so previously mentioned, the integral over so 
is replaced by a finite sum over N segments of length L,: 

1 "  m 

(20) #b(r?  892) = 2 Z C fbl(Sj) C Glm(r,  z ,Rj ,  zj) COS (16)RjLj. 
1-0 1-1 m-0 

For large r ,  the Bessel function, Kz(,um r ) ,  of (15) takes the asymptotic form (e.g. 
Abramowitz & Stegun 1965) 

limKl(,uu, r )  = - e-rmr+O(r-t). (21) 

It follows that the potential (20), a t  large distance from the body, is dominated 
by the m = 0 term, the terms for which m 1 dying out exponentially (the roots 
(,urn), 

r+m ( 2 L J  

being real). The far field expression for (20) is then 

l *  
lim # b ( r ,  8 , ~ )  = 2 C C fbz(sj) Gzo(r, z, R,, Zj) cos (lO)Rj Lj + O(r-i) ,  

iCo cosh [ k ( Z j + h ) ]  cosh [ k ( z + h ) ]  e-~in-iinzJl(kR,) 

(22) 
r+m 1-0 3-1 

with 

Glo(r, z,  Rj ,  2,) = 

and 
v2 - k2 

C" = 
(v2- k2) h - v ' 

In  (22), the term corresponding to the so-called local waves decays as r-g. Finally, the 
surface displacement, for each mode b,  a t  large distance from the floe, is obtained 
from the velocity potential of (22), using the linearized dynamic boundary condition 
a t z = O  

(23) 
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N m  
G,cosh(kh)e-f'" C Cfbl(sj)cosh[k(Zj+h)] 

j=11=0 

x Jl(kRj)  e-tinlRj L j  cos (ZB), 
and, for the diffracted wave ( b  = 4), 

N m  
C, cosh (Ich) e-f'" C X f b l ( s j )  cosh [ k ( Z j  + h)] 

j=1 Z=O 

x Jl(kRj) edi"l Rj Lj  cos (10); 

and A is a factor introduced to conserve energy, as explained below. In (23), the 
surface displacements describe cylindrical waves radiating away from the floe with 
an amplitude of ($4HDb(0)f )  as a function of the direction of propagation 0 and 
distance r .  

In  the Appendix, the infinite depth expression for the scattering amplitude, D,(0) ,  
is derived. In the case of large depth, the Green function of (15) takes a different 
form, first obtained by John (1950). As one would expect, the finite depth Db(0) of 
(23) tends to the one obtained in deep water, (A l l ) ,  by letting kh-too. The details 
need not be given here, however. 

The scattering amplitude of (23) (or (A 11)) gives the amplitude and the directional 
properties of the four scattered waves. Also, the total scattering cross-section of a 
floe, defined as 

r2 

us = 10b(0)12d0, (24) 'I" b=l 0 

determines the fraction of the incident energy being scattered through diffraction 
and the forced motions. As will be seen in the next section, the ability of a particular 
ice field to disperse energy over all directions strongly depends on the effectiveness 
of these two processes. 

3.2. Scattering by the entire ice jield 

So far, the problem of a plane wave incident on a single floe has been investigated. 
However, the required wave field is determined by the scattering of each spectral 
component on the whole array of randomly distributed floes. To obtain this wave 
field, a statistical average of the scattered waves is done over the entire domain using 
the theory of wave propagation and scattering in random media. 

Since the floes are randomly distributed, the scattered field is not constant and its 
amplitude and phase fluctuate in a random manner. The total wave field can be 
divided into the average field, ( ~ ( r , t ) ) ,  also called the coherent field, and the 
fluctuating field, rp(r, t ) ,  called the incoherent field. At a point ra on the ocean surface, 
the surface displacement is the sum of trhe incident wave and the contributions from 
all the scatterers located a t  rs. The spatially averaged (ergodically equivalent! to the 
ensemble averaged) wave a t  I,, ( q ( r , , t ) ) ,  is given by the Foldy-Twersky integral 
equation (e.g. Ishimaru 1978) 

(T(ra, t ) )  = t )  + ~ t ( ~ ( r s >  t ) )  ~ ( r s )  drs, (25) ss 
where ~ ~ ( r ~ ,  t )  is the incident wave a t  ra, ut(q(rs,  t ) )  a symbolic notation to indicate 
the wave a t  ra due to the scattering of the coherent wave, ( q ( r s , t ) ) ,  incident on a 
scatterer located a t  rs, and p(r,)  the number of floes per unit area, also called 
'number' density. 
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FIGURE 2. Simple hexagonal model of a homogeneous ice cover. D, is the average distance 
between floes of radius a. 

Because of the finite size of the floes and to prevent divergence of the integral in 
(25) ,  a decay of the number density with distance from ra must be included to 
account for shading of remote scatterers by nearby floes. A homogeneous field of ice 
floes could be represented by a simple hexagonal model in which the floes are 
separated by D,,, the average distance between floes (figure 2) .  The polygon includes 
a total of three floes and covers a surface S = &'3Div. Thus, without shading, the 

3 2 uniform number density is 
Po = g =  X '  

The shading is introduced by considering the effect of a ring of average radius r and 
of small width dr = 2a. The fraction of the perimeter of this ring taken by ice floes 
is 

p0(271r 2a) 2a - 8a2 f ' =  -- 
27cr 43%' 

and is independent of r. The transmittivity of each ring of width 2a, assuming opaque 
floes. is then 

T, = (1-f') = 1------ ( 
On a distance r = lrs-ral from the centre of a floe located a t  r,, waves scattered a t  
rs will travel through ( r  - a ) / 2 a  rings before reaching r,. Therefore, under the single 
scattering approximation where the amplitude of a wave scattered more than once 
is assumed to be negligible, the number of floes per unit area effectively radiating 
waves to ra, without being shaded by other floes, is given by 

This 'effective' number density, p,(r) ,  decreases with distance a t  a rate which is a 
function of the degree of ice cover, fi = 2xa22/3Di,, with the importance of the 
contributions from nearby floes in the integral of (25) increasing with fi (figure 3). 
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FIGURE 3. Effective number density, p,(r), for different degree of ice cover, f,. In this example, 
the floes have a radius a = 10 m. 

To obtain an expression for the average wave field, (25) is solved by first neglecting 

(30) 
multiple scattering : 

GY7PS> t )>  = %?70PS> t ) .  

Secondly, since the waves travel through a sparse distribution of scatterers, the far 
field approximation obtained in (23) is used to give 

where 0 is the angle between the incident direction and r = lra-rsl. Equation (31) is 
valid only when ( ~ ( r , ,  t ) )  can be approximated by vO(rs, t ) ,  and when ra is in the far 
zone of the floe a t  rs. These two assumptions may seem restrictive but, in the present 
model of low ice concentration, i t  appears reasonable to assume that the amplitude 
of a wave scattered more than once is negligible compared to the ones included in the 
simple scattering theory, and to neglect the local waves. About this last assumption, 
it is interesting to examine the relative amplitude of the neglected waves. In  (22), or 
(A lo), the local waves decay as (d). As previously mentioned, the importance of the 
contributions from floes located at  small r increases with ti. Then, referring to the 
values of the effective number density, p e ( r ) ,  fort, = 0.25 (figure 3), one has to go as 
far as r' z 21 m to have the equivalent of one complete floe effectively radiating 
waves ; 

/;lp,(r)rdrdH = 271. pe(r)rdr z 1 for r' = 21 m. 

At this distance, the local wave amplitude is less than 5% of the far-field wave 
amplitude. For larger ice floes (a  > 10 m), r' has even larger values, resulting in a 
smaller relative amplitude ( < 5 %) of the neglected local waves. Thus, in this model, 

I 
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for an ice concentration fi < 0.25, the contribution to the scattered energy from the 
waves neglected by the far-field approximation is small and can be safely neglected. 

To solve (25) it is more convenient to use the Cartesian coordinates (x, y) with x in 
the direction of the incident wave. Since the geometry of the ice field is independent 
of y, the coherent field must also be independent of y and should behave as plane 
waves propagating along the x-axis. Waves scattered in other directions are then 
included in the incoherent field. Using the approximations (30) and (31), (25) 

and 

The integral over ys of (32) is evaluated by the method of stationary phase (e.g. 
Jeffreys 1962) with the stationary point yo = y,. From the general form of the 
asymptotic solution obtained by this method, the integral becomes (Masson 1987) ( ~ r  exp (:in) D(0) exp (ik(x, - x,)) pe(x ,  - x,) if x, < x, 

( F r e x p  (fin)D(n:)exp(ik(x,-x,))p,(x,-x,) ifx, < x,. 
111( (33) 

Using (33), the coherent field of (32) can now be written as 

(V(za3 t )> = 

q , (x , , t )+Re($AH~rexp(~ in : ) [  { 1, exp ( - iks,) pe(xa- xs) dx, 

+{ J%:exp (ikx,)p,(x,-x,)dx, D(n:)exp(-ikx,) 

The last expression for the coherent field, valid for any x,, can be simplified by 
choosing a centred observation point, with x, = 0. Using the effective number 
density of (29), (34) becomes 

(q(x, = 0, t ) )  = qo(x, = 0, t )  + Re (LJH a,[D(O) eik(0) +D(n) e-"(O)] ePiwt), (35) 

with the 'coherent scattering' coefficient, a,, given as 

In  (35), the resultant average field is made up of three components: the incident 
wave, qo(xa, t ) ,  to which has been added a wave travelling in the same direction and 
of amplitude proportional to D(O), and a second one travelling in the opposite 
direction, of amplitude proportional to the backward scattering amplitude, D(n).  In  
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FIGURE 4. The square of the modulus of the coherent scattering coeffient, laJ2, as a function of the 
parameter ka. Results are given for floes of radius a = 10 m and ice concentrationf, = 0.1 and 0.2. 

other words, the only scattered waves interfering in a 'coherent' way to be a 
component, of the average field are the ones generated in the f incident direction. The 
square of the magnitude of the coherent scattering coefficient, 1a,12, which determines 
the amount of energy associated with these waves, decreases rapidly with the 
parameter ka (figure 4). 

Because of the randomness of the ice floe distribution, the phases of waves 
scattered by different floes have no correlation among themselves. Therefore, their 
contributions to the total energy of the scattered wave field can be simply added 
regardless of their relative phases. The total intensity is then the average of the 
square of the magnitude of the total field, and is the sum of the coherent intensity, 
l(q(xa, t ) )12, associated with the coherent field, and the incoherent intensity, 
(Iqf(ra, t )12),  the energy of the fluctuating field. 

Accordingly, the energy distribution from the scattering of a single component of 
the incident spectrum is obtained from Twersky's integral equation for the total 
intensity, similar to the Foldy-Twersky integral equation (25)  for the coherent field, 

<lq( ra> t)12) = l<q(xa, t ) ) 1 2 +  JJIVEIZ<IT(~S~ t112) pe(rs) drs, (36) 

where I V ~ ] ~  (Iv(r,, t)12) is a symbolic notation to  indicate the scattered wave energy at 
ra due to a scatterer located a t  r,. From the expression for the coherent field of (35), 
and using the far-field approximation in the case of single scattering, (30) and (31), 
to evaluate the energy contribution from the scattered waves, (36) can be written as 

(lq(xw t)12) 

Expressing dr, as rs 

where ,4 = lim [ p e ( r S )  dr,. 
r+m 

(39) 
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FIGURE 5. Energy factor, p = J k y p , ( ~ )  dr, as a function of the distance of integration rmax. Results 
are given for floes of radius a = 10 m and ice concentration, f i ,  of 0.05, 0.1 and 0.2. 

Allowing the energy contributions to come from scatterers locat’ed at distances of up 
to infinity (as in (39)), p tends to its asymptotic value of one floe per diameter, 1/2a, 
whatever the ice concentration, f i ,  is. If the scattering process is limited, in time for 
example, the upper limit of the integral in (39) takes a finite value, rmax, which is the 
maximum distance travelled by the waves over a certain time interval At. I n  this 
situation, the influence of the degree of ice cover on /3 will be noticeable, p increasing 
with f i  (figure 5 ) .  

I n  (38), the incident wave energy, after scattering, is partitioned into: (i) a 
component identical to the unscattered incident wave, but of reduced (by the factor 
A )  amplitude, I d H ;  (ii) energy associated with the two waves of the coherent field 
travelling in the & incident direction ; (iii) directional scattering contributions with 
intensity apportioned as 10(19)1~. When a wave spectrum, F( f, O), is in the presence of 
an ice field, the energy of each spectral component is spread out over all directions, 
according to (38). The scattered spectrum is then obtained by summing, for each 
component, the contributions coming from waves of the same frequency and incident 
from all directions. Thus, for each frequency f,, the spectrum after scattering, 
F(fn,O) ,  is obtained by the product of the incident spectrum, F*(f , ,O),  and a 

(40) 
transfer function [TIf ,  

or, in tensor notation, (41) 

The matrix [TIf, is symmetric with each element (q,),, of the form 

F(fn,  8)  = J’*(fn, 8)  [TI,,, 

F ( f n ,  0,) = F*(fn,  8,) (?j)p,. 

(Tj)fn = A2{plW,)l2 A0+W,) (1  + 1%W)I2) +m -Q l a , ~ ( w > ~  (42) 

where O,, = 10, - 8,l, A0 is the angular interval of the spectrum, S is the Dirac function, 
and the parameters p, lD(O,)lz and a are evaluated for the frequency f = f,. 

3.3. Energy dissipation by the ice 
I n  $2, a dissipation term, S,,, has been defined for the ice-free situation, where energy 
is lost mainly through wave breaking. When an ice cover is present, some energy is 
also lost within the ice field by various dissipative processes (ice deformation, wave 
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FIGURE 6. Percentage of sea surface covered by ice along laser track, June 6, 1972 (---, total 
cover; -, floes > 20 m in diameter), (from Wadhams 1975). 

breaking on the floes, etc.). By analogy to (24), where a scattering cross-section, rs, 
was defined, an absorption cross-section, ua, is introduced here to  account for this 
extra dissipation. 

The total energy associated with an incident wave of amplitude 1 j H  travelling 
through scatterers on a distance x, can be written in terms of this cross-section (e.g. 
Ishimaru 1978) : 

(43) 

where po is the number density without shading of (26). In  order to evaluate the 
parameter ua, data collected by Wadhams (1975) off the east coast of Newfoundland 
have been examined. He measured, along a 90 km long line, t'he 'apparent ' energy 
density for different frequency bands of swell entering the MIZ. Details of the degree 
of ice cover along the transect are given in figure 6 and the results are plotted in 
figure 7 .  

The transformation of the measured wavenumber spectrum into a frequency 
spectrum depends on the directional properties of the waves. In this case, the 
measurements were made along the major direction of the swell vector which was 
assumed to have no directional spread. If the energy of the swell is noticeably spread 
out over direction by the floes, the computed energy a t  a certain frequency becomes 
'contaminated' by shorter waves travelling a t  an angle relative to the incident 
direction. Therefore, the spectral densities plotted in figure 7 are associated with the 
incident, non-scattered swell alone only in regions where the scattering by the ice 
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FIGURE 7. Energy 
( s )  for the bands: 
6, 7.85; band 7, 7 
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density plotted against distance of penetration inside the ice field. Central period 
band 1 ,  > 11.6; band 2, 11.6; band 3, 10.53; band 4, 9.35; band 5, 8.50; band 
.34 (from Wadhams 1975). 

Band 

1 
2 
3 
4 
5 
6 
7 

T ( s )  ku 
1 ! 

11.6 0.21 
10.53 0.25 
9.35 0.32 
8.50 0.39 
7.85 0.46 
7.34 0.53 

c*(m) 
0.070 
0.012 
0.033 
0.088 
0.148 
0.149 
0.146 

TABLE 1. Absorption cross-sections computed from figure 7. Each band has a central period T. 

floes is negligible, the incident swell remaining quasi-unidirectional, and can be used 
to estimate va through (43). 

In  the outer 20 km, where a high fraction of the surface is covered by smaller floes, 
the assumption of unidirectionality appears reasonable, the parameter ka remaining 
small (see $4). Thus, in this region, the measured loss of energy can be attributed 
mainly to the absorption cross-section, and (43) should describe well, for each 
spectral component, the energy attenuation with distance. However, as one goes 
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deeper into the ice cover, the proportion of larger floes gradually builds up and the 
scattering increases with ka. This causes an apparent increase of energy for a given 
band due to loss of unidirectionality at higher frequency (as seen in figure 7 for most 
bands at  penetrations in excess of 20 km). Table 1 gives the computed absorption 
cross-sections for the first 20 km where fi z 0.15 and a z 7 m. The value of ca rapidly 
increases to reach a maximum value of about 0.15 m. The data being limited, these 
results constitute a crude estimation of the absorption cross-section b u t  provide a 
reasonable quantitative description that will be used in the model. 

4. Results of floe response and scattering amplitudes 
The wave-induced motion of a floating body is usually presented in the form of 

non-dimensional response amplitude operators (RAO) defined, here, as &/;H for 
heave and surge, and L€J180H for pitch (with & in degrees). The response varies 
with the incident wavelength, the water depth, as well as the geometry and 
dimensions of the floe. The position of the centre of gravity and the radius of gyration 
(in pitch) are important factors in the determination of these RAOs. In order to 
compute these two parameters, a simplified density structure of the floe was 
assumed. The density of sea ice is not uniform throughout its thickness and varies 
owing to desalination as the floe ages. The floes present in the region described by the 
model are mainly composed of relatively young ice and the density is thus assumed 
uniform. Furthermore, due to the low thickness of the floes (<4 m), the freeboard is 
expected to be small (60.55 m) (e.g. Tucker, Gow & Weeks 1987). The floes are thus 
considered, in the estimation of the position of the centre of gravity and the radius 
of gyration, to be completely submerged, with a uniform ice density equal to 1. 

In  figure 8, the computed RAOs are given as a function of ka for a floe of radius 
a = 10 m and draft d = 3 m. As indicated in the figure, the effect of water depth on 
the response is rather minor except for the low-frequency surge response. When the 
water depth changes from 30 m to 100 m, the heave and pitch peaks vary slightly in 
position and magnitude, but the response curves, for these two modes of motion, are 
almost unchanged. For the surge motion, the two curves are also closely related for 
low values of La for which the shallow-water values are much larger. This can be 
explained by looking a t  how the water particle path changes with depth. When the 
diameter of the floe is small compared to the wavelength, the floe tends to behave 
essentially as a fluid particle (e.g. Lever, Reimer & Diemand 1984). For deep water 
waves, the water particle travels along closed circular orbits of radius ifl, resulting 
in a surge RAO of 1. As the water depth to wavelength ratio decreases, the orbits 
become flat ellipses and the ratio 

The typical heave response is shown in figure 9 ( a )  where the ltAOs are given for 
three floes of different thickness. For all three floes, the response is perfect (RAO+l) 
for long waves (ka+O) and shows very small movement in the short-wave region 
(ka + 1). In the intermediate range of ka, the floe geometry is critical in determining 
the importance of a resonant peak, which is absent for the thin floe, and increases 
in magnitude, narrows and slowly shifts to  lower values of ka as the floe thickens. 

As in the heave motion, the surge RAO indicates a perfect response for long waves 
and very small displacement for short waves (figure 9 b ) .  For intermediate values of 
ka, the response is generally larger for thinner floes which are moved by faster upper- 
layer flow. Also, when t,he radius-to-draft ratio decreases, a peak and a minimum 
develop. This feature is attributed in part to coupling between the pitch and surge 

increases. 
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FIQURE 8. Response amplitude operators (RAO) for a floe of radius a = 10 m and draft 
d = 3 m. The RAOs are given for a depth of -, 30 m ;  ---, 100 m. 

motions for which a 180" phase shift occurs simultaneously with the appearance of 
the peak (e.g. Wehausen 1971). 

Again, the pitch response goes from near perfect response, following the wave 
slope, to  negligible motion as ka increases (figure 9c).  As in the heave motion, a 
resonant peak appears when the thickness of the floe increases. When the radius-to- 
draft ratio decreases, it narrows and its magnitude becomes more important, with its 
position shifting to lower ka values. No attempt has been made to include viscous 
pitch damping in the simulation. Its main effect would be to decrease the pitch 
resonant peak but, because the described floes have a rather high radius-to-draft 
ratio, the results predict a small resonant peak and, therefore, the viscous damping 
should remain minor. 

Finally, the effect of the presence of a keel is examined. Real floes often present 
deformation features such as ridges and keels, due to  intense wave activity or 
internal stress in the ice pack. The response of a cylindrical floe, to which has been 
appended a conical keel of 3 m in depth, is presented in figure 10. Although the keel 
modifies the motion by creating the effect of a slight increase in thickness, the overall 
characteristics of the response curves remain unchanged. 

As seen in $3.2, the nature of the scattering amplitude, D,(e),  determines the 
ability of a given icefield to disperse incident wave energy over all directions. For 
each of the three forced waves (b  = l , 2 , 3 ) ,  the summation in I of the general 
expression for D,(B), (23) or (A 11), leads to  one single non-zero term: the I = 0 term 
for the heave motion corresponding to isotropic (uniform in all directions) waves, and 
the 1 = 1 term for surge and pitch with a simple cos 8 dependence of the scattered 
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FIGURE 9(a ,  b). For caption see facing page. 

waves. Also, the magnitude of the scattering amplitude, for each mode, is a 
combination of the dependence on the response amplitude operator, and of an 
increase, with the incident wavenumber, of the efficiency of the forced motions to 
generate waves. Figure 11 gives the RAO and the scattering cross-section, 

Qb = la, 1QA6)I2d6, 
0 

for a typical floe in surge, heave and pitch. In the low ka region, where the floe tends 
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ka 
FIQURE 9. Response amplitude operators (RAO) in the (a )  heave, ( b )  surge and (c) pitch 

motion, for floes of radius a = 10 m and draft d = 0.5 ,2 ,3  m, in a depth of 30 m. 

to follow the water particle motion, there is very little energy associated with the 
forced waves. For intermediate values of ka, a marked increase of energy, accentuated 
by the presence of a resonant peak in heave and pitch, corresponds to scattered 
waves of considerable amplitude. Finally, in the short-wave region, the forced waves 
are of small height due to the vanishing forced motions. When the radius-to-draft 
ratio diminishes, the increased narrowness and the shift of the peak towards lower ka 
values result, in an increasingly narrow peak for the cross-section, Qb,  for which the 
amplitude may even decrease. Although the heave and pitch RAO peaks are more 
developed for thicker floes, the wavenumber dependence of the cross-section 
minimizes their effect on the scattering ability of the floe. 

For the diffraction scattering amplitude, D,(B), the summation in 1 has to be 
extended to a few terms ( 1  x 12) such that the omitted terms do not contribute 
noticeably to the results. This produces a more complex directional distribution of 
the diffracted energy (figure 12). At the long wave limit, the small amplitude 
diffracted wave is almost perfectly isotropic. When ka increases, the outgoing wave 
separates into two parts : (i) the shadow-forming wave interfering with the incident 
wave to reduce the intensity behind the floe, and for which the energy eoncentrates 
into the incident direction as ka increases; (ii) the rest radiating out in other 
directions to form the reflected wave. For very large ka, the asymptotic value of the 
scattering cross-section (also called the effective width) is that for a circular cylinder, 
namely (e.g. Morse & Feshbach 1953, p. 1381) 

lim &, = 4a. (44) 
ka+m 

For ka 9 1, the object casts a geometrical shadow so that no energy is lost: half of 
the diffracted wave must cancel the incident wave for a width 2a behind the cylinder 
and the other half must be t h e  reflected wave. with an effective width of 2a. A 
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FIQURE 10. Response amplitude operators of a cylindrical floe ---, with and -, without a keel. 
The floe has a radius a = 10 rn and draft d = 5 rn with a keel of 3 rn in depth (water depth of 
30 rn). 

convenient way to compute the diffraction cross-section, independent of the angular 
resolution of the model, is to use the forward-scattering theorem which, in this case, 
takes the form (Miles 1971). 

(45) Q 4 - - - (?)1 - Re ($” 0 4 ( 0 ) ) *  

4 
The total scattering cross-section, 

us = C Qbj 

from which has been subtracted the incident direction contribution, lD(0)12 Ad, 
measures the efficiency of the ice, for a given ka, to scatter energy away from the 
incident direction. By looking at the distribution of this corrected us us. ka, three 
distinct regimes can be identified: the ‘small floe’ regime for ka < 1;  the ‘efficient 
scattering ’ regime in the intermediate range of ka ; and, finally, the ‘ backscattering ’ 
regime in the short wave region (figure 13). 

For small ka(ka < 1),  the main contributions to the scattered waves come from the 
diffracted wave and from the wave forced by the heave motion. In that ‘small floe’ 
region, those two components are nearly isotropic and of small amplitude. Therefore, 
when the radius of the floe is small compared to the incident wavelength, only a small 
fraction of the incident energy is scattered (equally) in all directions. 

For all floes, the ability of the ice cover to disperse energy increases considerably 
in the intermediate range of ka, but the extent and the nature of this ‘efficient 
scattering ’ regime is a strong function of the geometry of the floes. Thin floes are 
‘good ’ scatterers over a broad range of ka( 1 < ka < 6), with a maximum in the region 

b-1 
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FIGURE 11. Response amplitude operators (RAO),, and scattering cross-sections, Q,, for -, surge ; 
___  , heave; and ..., pitch (the thick lines are for the cross-sections). The floe has a radius 
a = 10 m and draft d = 2 m in a water depth h = 30 m. 
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FIGURE 12. Diffraction differential scattering cross-section, lD4(0)lz, for ka = 0.5, 3.75. The floe 
has a radius a = 10 m and draft d = 2 m in a water depth h = 30 m. 

where the incident wavelength is comparable to the floe diameter, owing to relatively 
large values of the pitch and heave RAOs where the forced motions are more 
efficacious in generating waves. As the radius-to-draft ratio decreases, the resonant 
heave and pitch RAO peaks shift to lower ka and the extent of this region, dominated 
by these two maxima, decreases (1  < ka < 4). 

When ka is large, only the diffraction contributes significantly to the scattered 
wave. In  this ' backscattering ' regime, as one approaches the limit ka+co, about half 
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FIQURE 13. Total scattering cross-section corrected for the incident direction contribution, 
(vs-lD(0)l*AO), for floes of radius a = 10 m and draft d = ---, 0.5 m ; -, 2 m ; . . . , 3  m in a water 
depth h = 30 m. 

of the diffracted energy is reflected backward, forming the backscattered wave, and 
the other half still travels in (or close to) the incident direction (resulting in a 
corrected us of 2a m). 

Although this is not the problem addressed here, it is interesting to  interpret, with 
the help of these results, certain measurements of directional wave spectra entering 
the MIZ. Wadhams et al. (1986), during the MIZEX-84 experiment in the Greenland 
Sea, observed that the directionality of spectral components broadens significantly 
more rapidly for the high frequencies than for the swell frequencies. Knowing that 
the floe size gradually increases into the icefield, shorter waves are expected to be the 
first ones to enter the ‘efficient scattering ’ regime and, consequently, their directional 
character is more rapidly affected. On the other hand, near the ice edge, the swell 
components propagate through small floes with negligible scattering. Further in the 
ice pack, as they encounter larger floes, these long waves eventually reach the 
‘efficient scattering ’ regime with their directionality seriously affected. 

More recently, during an experiment in the Weddell Sea, Squire, Wadhams & 
Moore (1986) observed a marked change in the directional properties of the incident 
spectra which broadened to become isotropic a t  a point in the ice pack where the ice 
floes reached a size comparable to the wavelength of the spectral peak. Referring to 
figure 13, this would correspond to a maximum value for the corrected total cross- 
section near ka = 3 (appropriate for thin floes, d = 0.5 m). 

5. Numerical integration procedure 
Owing to the complexity of the different source functions in the energy balance 

equation (including the additional Sice term), an important simplification is 
introduced by assuming the medium unbounded and uniform. This reduces the 
problem to the evolution of purely time-limited waves owing to the elimination of the 
advective term, C, - VF,  of (4) which then takes the form 
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with Sice introduced in (51) in the form of a transfer function. The numerical 
integration of (46) proceeds following a simple first-order forward difference method. 
At first, timesteps are set to very small values (At % 10 s) to account for the rapid 
initial change in spectral shape (reported in $6.2) .  Once this process is stabilized, 
timesteps are dynamically adjusted, starting with (At) ,  = tnP1/5 and reducing i t  by 
a factor 2 in case of a too large A F I F .  The spectrum is specified for frequencies 
distributed according to f, = fo(  1.1)"-', with fo = 0.07 Hz being the lowest frequency, 
up to 2.5 x fpeak (where fpeak represents the frequency a t  the maximum of the 
spectrum). Beyond this value, a high-frequency f -5 decay is assumed, adjusted 
independently for each direction. There is an ongoing debate on the exact nature of 
the high-frequency spectral region, with strong evidence for an f P4 dependence (e.g. 
Donelan, Hamilton & Hui 1985; Phillips 1985). However, the choice of an f P 5  shape 
in the short-wave region of the spectrum is not important for this analysis. The 
angular resolution of the spectrum is 30". 

The initial wave field specified is a JONSWAP spectrum (Hasselmann et al. 1973) 

where 

Here the parameter a is equivalent to the usual Phillips' constant but with a time 
dependence, y = 3.3 is the peak enhancement factor and G(f,8) a directional 
spreading function. For a certain initial time to(s), the values of a and fpeak are 
obtained from the results of the parametric model of Hasselmann et al. (1976) : 

and 

fpeak = 

a=O.O33( f eakUIO ' ) 

(48) 

(49) 

where Ulo is the wind a t  10 m. 

by Hasselmann & Hasselmann (1985 b )  
The spreading function, in (47) ,  is of the cosine-power type and takes the form used 

where 

The normalization factor is given by 

with r the Gamma function. 
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At each timestep, Sin, Sd, and S,,, are computed to obtain a new spectrum which 
is then modified, for each frequency f,, by the scattering transfer function of (40) : 

F ( f f i , e ; t + A t )  = [F(f,,e;t)+((si,+sd,)(l-fi)+sn,)Atl [nf, (51) 
where, in [ TIp,, the value of p is determined by setting the upper limit of integration 
T,, = C,  At in (39). 

The energy factor A ,  introduced in (23), is obtained, for each frequency, from 
energy conservation applied to  (38), taking the loss of energy through the absorption 
cross-section, ua, into account : 

A = (1+lacD(0)12+lacD(~)12+P lD(e)l2dd8+fd)-;, (52) 

where fd, the fraction of energy lost in the scattering process, is given by 

The integration procedure is repeated for a series of timesteps until dominant trends 
can be clearly established. 

6. Time integration of wave spectra 
6.1. Ice-free situation 

The numerical integration of (46) was first performed, for calibration purposes, for 
the more common case of an ice-free ocean surface ( fi = 0) ,  in a water depth h = 30 
m. A wind of U,, = 10 m/s was assumed to  have been blowing for about 3.25 h ( to  = 

11 700 s) which, according to (48), corresponds to a JONSWAP spectrum with an 
initial peak frequency fpeak = 0.3 Hz. Figure 14 shows the initial one-dimensional 
(integrated over direction 8) energy balance. The input and dissipation terms are 
maximum at  the peak, according to their linear dependence on the spectrum. The 
more complex nonlinear term, S,,, has its typical three-lobed distribution ; the 
energy is transferred from the central region of the spectrum to both shorter and 
longer wave components. The nonlinear transfer is the principal source of energy on 
the low-frequency forward face of the spectrum, and controls the shape of the 
spectrum including the position and development of the peak itself. The two- 
dimensional nonlinear term, s,,,( f, @, has a broader directional distribution in its 
high-frequency lobe than in the two other lobes, and the low-frequency lobe is 
confined to a narrow frequency band and directional distribution (figure 15). There 
are also, near the peak frequency, two relative maxima (a ,  a') in directions a t  an angle 
to the wind, as previously discussed by several authors (Webb 1978; Fox 1976; 
Longuet-Higgins 1976). 

The integration was performed over a short duration of about 1.4 h. Throughout 
the integration, the angular distribution of the spectrum could be satisfactorily 
described by the initial spreading function of (50). The evolution of the total energy, 
E ,  and the peak frequency, fpeak, is shown in figure 16 together with the predictions 
of the parametric wave model of Hasselmann et al. (1976). In the latter, which is 
based on measurements of fetch-limited wave spectra from various sources (including 
JONSWAP results), the evolution offpeak and E is obtained from (48) and (49) using 
the relation 

(54) 

The decrease of the peak frequency predicted by the model closely follows the 

Ef L a k  = 1.6 x 10-4. 
g2" 
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FIGURE 14. One-dimensional energy balance for a JONSWAP spectrum with f,,., = 0.3 Hz. The 
wind blows at U,, = 10 m/s on an ice-free ocean ( F ,  frequency spectrum; Sin, wind input; 
S,,, dissipation ; S,,, nonlinear interactions). 

parametric model predictions. The total energy increases a t  about the same rate for 
the two models, but with an initial disagreement on the absolute value of the energy, 
E.  This difference, although not important, can be explained by the discrepancy 
between (54), used in the parametric model to relate the total energy of the spectrum 
to the parameter a,  and the relationship obtained from the numerical integration of 
a JONSWAP spectrum (like the one used here to describe the initial sea state), 
namely (Carter 1982) : 

Ef&ak = 1.957 x (55) 
g2a 

6.2 Effect of a partial ice couer 

The evolution of the spectrum, used in the previous section to describe the initial sea 
state (to = 11 700 s), is now examined under the action of a partial ice cover. The 
integration was performed for two different ice concentrations (10 YO and 20 YO) with 
floes of radius a = 10 m and draft d = 2 m, and a wind U,, = 10 m/s. The resulting 
spectra, F( f ,  B ) ,  are contoured in figure 17 (a )  and figure 17 ( b ) ,  for the first 12 min of 
the integration. 

In  both cases, the ice cover appears to be very efficient in spreading out the wave 
energy over all directions. The results of $4 indicate that most of the energy of the 
initial spectrum is contained in the efficient scattering regime (1 < ku < 4), with the 
high-frequency components extending into the backscattering regime (ka 2 4). 
Accordingly, on the spectral forward face and at the peak, the spectrum becomes 
almost instantaneously isotropic, and, in the less energetic high-frequency region, 
the energy is scattered more slowly and preferentially in the backward direction, 
resulting in the gradual build-up of a secondary maximum near B = 180'. 
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FIGURE 15. Two-dimensional nonlinear term, S,,(f, O ) ,  for a JONSWAP spectrum with 
f,,,, = 0.3 Hz. 
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FIGURE 16. Time-limited growth curves for the total energy, E ,  and the peak frequency, f,,,,,. The 
wind blows at 10 m/s over an ice-free ocean (-, model predictions; ---, Hasselmann’s 
parametric model). 

As the spectrum rapidly tends to isotropy, the one-dimensional energy balance is 
drastically modified. Figure 18 shows the new energy balance obtained after only 12 
min, with an ice cover of 20%. Here, Sice represents the energy loss due to the ice, 
through the fraction fd of (53). The extra dissipation caused by the ice is now an 
important term in the energy balance with, in this case, a magnitude of about twice 
that of the S,, term at the peak. Furthermore, the wind input term, Sin, has 
decreased to less than half of its ice-free value (see figure 14). Although this term is 
reduced to 80 % of its previous value by the (1 -fi) factor in (46), the calculated 
decrease is mainly due to the actual nature of the parameterization of the wind input. 
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I n  ( 5 ) ,  the ( (U,cos~/c)- l )  term ensures that the energy is transferred from the 
atmosphere to the waves in proportion to  the phase velocity component in the 
direction of the wind, and a t  a rate proportional to the energy which they already 
have. As the wave energy is scattered by the floes away from the wind direction, the 
energy input rapidly diminishes. This reduction in the input function, combined with 
the extra dissipation of the energy by the ice, severely limits the growth of the 
spectral energy content. The rate at which the energy is supplied by the wind rapidly 
becomes insufficient to overcome the energy lost through the different dissipation 
processes, and the energy decays (figure 19). 

The nonlinear transfer is also seriously affected as the spectral shape changes. It 
still has its typical three-lobed shape but with considerably reduced amplitude and 
larger directional spread (figure 20). This known dependence of the nonlinear 
exchange mechanism on the angular spectral distribution (e.g. Hasselmann & 
Hasselmann 1981, 1 9 8 5 ~ )  was first discussed by Hasselmann (1963). He found that, 
since most of the energy flux is due to interactions in regions of high energy density, 
an increase in angular spread explains the associated decrease in energy transfer. In  
our problem, where the energy is being scattered away from the mean direction, the 
energy transfer effectively decreases and becomes relatively inefficient in shifting 
the peak towards lower frequencies. Thus, a partial ice cover reduces the shift of 
the spectral peak towards longer waves (figure 21). 

The ice concentration, fi, does not appear to be a critical parameter in the 
scattering process. The energy decay rate is affected by a change in fi due to the 
factor (1 - fi) added in the balance equation and to the variation of the attenuation 
rate in (43). However, as fi varies from 0.05 to 0.25, the scattering ability of the ice 
cover remains relatively unchanged, the parameter B of (38) presenting only small 
variations (see figure 5). Therefore, a small change in ice concentration of a noticeable 
ice cover ( fi 2 0.05), within the range of validity of the model ( fi < 0.25), does not 
significantly affect the spectral evolution obtained, the characteristic timescale of the 
scattering mechanism (time needed for an incident spectrum to become isotropic) 
being so small relative to the ones of the other energy terms modifying the spectrum. 

The evolution of a spectrum with the same peak frequency ( fpeak = 0.3 Hz), but 
generated by a stronger wind, U,, = 20 m/s, is then examined with a 20 % ice cover, 
fi = 0.2. Equations (48) and (49) gives an initial time to x 1.3 h and a more sharply 
peaked initial spectrum, with a = 0.024. As for the lower wind velocity, the spectrum 
rapidly tends to isotropy, the characteristic timescale of the scattering process 
remaining relatively small ( x  15 min). Because of the higher wind speed, the 
dissipation takes longer to overcome the input from the atmosphere but, as the 
spectrum becomes isotropic, the energy balance rapidly adjusts to limit the wave 
growth both in length and height (figure 22) .  

The integration is then done from an initial JONSWAP spectrum with fpeak = 0.4 
Hz, describing a younger sea state (to w 1.7 h for U,, = 10m/s). In  this case, only the 
low-frequency spectral region, near the forward face of the spectrum, is contained in 
the efficient scattering regime, the rest of the frequencies extending over the 
backscattering region. Consequently, the spectrum undergoes differential scattering, 
with the low frequencies becoming rapidly isotropic and the short-wave tail being 
nearly unaffected (except for the formation of the backscattered ‘bump’) (figure 23). 
Since an important portion of the energetic region of the spectrum is scattered away 
from the mean direction, the wind input function and the nonlinear energy transfer 
are reduced by the scattering, but not as much as in the previous case with the 
smaller fpeak. Thus, the spectrum is, at first, allowed to grow, but at a rate smaller 
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Frequency (Hz) 
FIGURE 17 (a). For caption see facing page. 

than in the ice-free situation. However, as the peak slowly shifts towards lower 
frequencies, the energy transferred to  the spectral forward face is rapidly spread out 
over all directions, resulting in the same growth-limited situation as before. 

So far, in all cases studied, where an important fraction of the energy was spread 
out by the efficient scattering regime, the ice cover caused a very rapid tendency 
towards spectral isotropy, leading to a decay of the wave energy. This raises an 
important question : ‘Is there a minimum wind speed for which waves can still grow 
in the presence of a certain ice cover ‘1 ’ The evolution of a JONSWAP spectrum, with 

fpeak = 0.3 Hz and a = 0.014 (as in the U,, = 10 m/s case), initially isotropic, is 
examined under different wind conditions. There is a minimum wind speed for which 
the initial energy balance of such a spectrum results in an increase of the total energy 
((Ulo)min x 16 m/s for fi = 0.2; (Ulo)min x 13 m/s for fi = 0.1). However, because of 
the important reduction of the nonlinear energy transfer predicted by the model, 
these waves no longer grow in length. Thus, at first, as the wind transfers energy to 
the wave field, these short waves rapidly reach the maximum steepness at which they 
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Frequency (Hz) 

FIGURE 17. Time evolution of the spectrum, F ( f ,  0 )  ( m-2 s rad-'), in the presence of a partial 
ice cover of (a )  10% and ( b )  20% with ice floes of radius a = 10 m and draft d = 2 m, U,, = 10 m/s 
and fpeak(tO) = 0.3 Hz. 

lose their energy through breaking. In  other words, the spectral growth of an 
isotropic spectrum is limited by the S,, quadratic dependence on the wave-steepness 
parameter, Oi (see (6)). The total energy of the spectrum rapidly reaches a saturation 
levei at which the three active energy terms, Sin, S,, and Sic,, balance each other. 
Since the fraction of energy lost due to the ice, in a timestep At, depends on the wave 
frequency (through C, of (53)), each spectral component is attenuated by the ice a t  
a different rate, the longer waves decaying faster. Consequently, the average 
frequency of the spectrum, a, increases with time. Although this is beneficial to the 
wind input term, through a decrease of the average wave speed c ,  the associated 
higher value of the wave-steepness parameter 6, which varies as is-4, causes a more 
important increase of the S,, term. Therefore, from the saturation level, the energy 
of the wave field diminishes with time, as the average frequency increases under the 
action of the selective Sice term (figure 24). Continuing the integration, since the 
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FIGURE 20. Two-dimensional nonlinear term, S,,(f, O ) ,  at t x (to+ 12) min, with an ice 
concentration f, = 0.2 (see figure 15 for the f, = 0 situation). 
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FIGURE 21. Time evolution of the peak frequency, fpeSk, of an initial JONSWAP spectrum (f,,,, = 
0.3 Hz) in the presence of a partial ice cover of 0 % (from the Hasselmann parametric model), 10 % 
and 20 %. 

parameter Oi also depends on the energy content E, the wind input could again 
balance the dissipation, but a t  very low energy levels (for E < 0.0124 m2, in the 
problem of figure 24) corresponding to waves of negligible amplitude. Thus, in this 
time-limited situation, even with a wind speed high enough to cause an initial wave 
growth, the spectral energy rapidly decreases to very low values. 
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FIGURE 22. Time evolution of the peak frequency, fpeak, and total energy, E ,  for an initial 
JONSWAP spectrum ( fPeak = 0.3 Hz) in the presence of a partial ice cover of 20 YO with a wind 
U,, = 20 m/s. 

7. Discussion of the initial wave generation problem 
All the integrations described so far have been done with a certain non-zero initial 

wave field suddenly in presence of an ice cover, and, obviously, do not describe the 
problem of initial wave generation from a calm ocean surface. However, the results 
presented above can be used to better understand the problem of wave generation by 
an offshore wind starting to blow over the MIZ. As soon as the ice cover becomes 
sparser, the wind begins to generate very short fetch limited waves for which a high 
value of ka locates them in the backscattering region. Although some of the energy 
is lost in the backward direction, the waves are allowed to grow, but a t  a rate smaller 
than in the ice-free situation. However, as those waves travel further along the fetch, 
their wavenumbers decrease and, likewise, the floes gradually become smaller. Thus, 
the parameter ka associated with these waves diminishes as they approach the ice 
edge. In the most favourable conditions (strong wind blowing over a long fetch 
covered by a low ice concentration of large floes), waves of relatively important 
wavelength could eventually develop. But, as they would approach the ice edge, 
these waves would encounter smaller floes (a  < 10 m), and the resulting Ea ((kpeaka) 
< 6, for Lpeak >, 10 m) would cause, through scattering, a rapid inhibition of the 
wave growth. If the wind speed is larger than the ( Ulo)min required to initially sustain 
wave growth, the spectral energy would quickly reach a saturation level where the 
dissipation would balance the wind input to the waves, and the total energy of the 
spectrum would be restricted to relatively low values. Otherwise, the energy of the 
wave field would rapidly decay to a level a t  which the reduced energy input to these 
short waves would balance the dissipation terms. In both situations, the energy of 
the spectrum would be restrained to low values by the partial ice cover. Therefore, 
according to the model results, an offshore wind blowing over the outer part of the 
MIZ, cannot generate a substantial wave field, the surface waves remaining short, of 
small amplitude and with a large directional spread. 

In examining the model results, it  is important to keep in mind its limitations. For 
example, the assumption of a uniform ice cover does not properly describe all 
situations in the MIZ. It is very common to encounter large polynyas in which 
regular short fetch wave generation is possible. As suggested by Wadhams (1983), 
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FIGURE 23. Time evolution of the spectrum, F ( f , O )  m2 s rad-’), in the presence of a 
partial ice cover of 20% with ice floes of radius a = 10 m and draft d = 2 m, U,, = 10 m/s and 
fpe.k(tO) = 0.4 Hz. 

these waves could play, through wave radiation pressure, an important role in the 
formation of ice edge bands frequently observed, especially in the Bering Sea. 
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fpeak(t0) = 0.3 Hz, f, = 0.2, and U,, = 16 m/s. 

Appendix. Scattering amplitudes in infinite depth 
In  deep water, the appropriate form for the Green function of (14) is (John 1950), 

with appropriate corrections on signs, in agreement with Wehausen & Laitone 1960, 

where R‘ = ( ( X - X ) ~ + ( ~ - Y ) ~ + ( Z - Z ) ~ ) ~ ,  

q = ((z -X)Z + (y - Y)”i, 

lim G(x, X )  = 2zi kek(zfz) H ( l )  0 (kq)  +0(1/q3)  

v = w 2 / g ,  and the path of integration runs below the root v of the denominator. At 
large distance from the floe, John (1950) showed that this equation reduces to 

(A 2) 
q+m 

where Hi1) is the Hankel function of the first kind of order 0. It is convenient to 
convert (A 2) to cylindrical coordinates with 

Y Y 
r2 = x2+ y2, R2 = X 2 +  P, t a n 0  = -, tan 0 = - ; 

X X 
then 

Equation (A 2 )  can now be transformed in a symmetrical form, in the same way that 
Fenton (1978) obtained (15) in the finite-depth case. The use of Grafs addition 
theorem (e.g. Abramowitz &, Stegun 1965) gives 

q2 = R2 + r2  - 2rR cos (B- 0). (A 3) 

m 

H p ) ( k q )  = Hll)(kr)  J,(kR) cos [Z(O- O)]. (A 4) 
l--m 

In  this series, the - I t h  term is equal to the lth term. Thus, introducing a Kronecker 
delta, (A 4) can be written as 

us 

Hp)(kq)  = 2 (2 -6 ,0 )H~”(kr )4 (kR)  COS[I(B-O)]. (A 5) 
1-0 
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Substituting this new form for the Hankel function into (A 2), the deep-water Green 
function, for large r ,  is given by 

W 

limG = 2 ~ i k e ~ ( ~ + ~ )  Z (2-610)cos[Z(8-0)]J1(kR)H~1~(kr)+O(r-3). (A 6) 

Substituting (A 6) and (17) into (14), the scattered far-field potentials, for 

r+m I=O 

b =  1, ... 4, take the form: 

with G, = 27ti kek((z+z) Jl(kl2) lljl)(kr). 

As in the finite depth case, dS is expressed as R dO ds and the equilibrium contour, 
so, discretized into N segments of length L, : 

x cos[Z(B-0)]d@RjLf. (A 8) 
Integrating over 0, (A 8) reduces to 

(A 9) 
l N  O0 

# b ( r ,  e, z, % - c C G I ( r , B j ,  z, zj) cos ( z e ) B j L j .  
25-11-0 

From known asymptotic formulae for the Hankel functions (e.g. Abramovitz & 
Stegun 1965), it follows that, for large r ,  the far-field approximation of (A 9) can be 
written as 

N w  

# b ( r ,  e, z, = (2nk)tiexp ( -ai.) c c f b I ( s j )  exp ( k ( Z + z f ) )  J,(kBj) { j=1 I-0 

x exp ( -+inZ)RjL, cos (ze) 7exp (ikr) +O(r-t) .  (A 10) 

Finally, the surface displacement, far enough from the floe, is obtained from the far- 
field potential at the surface ( z  = 0) ,  using the linearized surface boundary condition. 
As in the case of finite depth, it takes the form of outgoing cylindrical waves: 

1 :x 

$4HD;(B)$P-wt) rs (A 11) 

with, in this case, 

for b = 1,2,3,  and 

for b = 4. 



80 D. Masson and P .  H .  LeBlond 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I.  A. 1965 Handbook of Mathematical Functions. Dover. 
ALLENDER, J .  H., BARNETT, T. P., BERTOTTI, L., BRUINSMA, J . ,  CARDONE, V. J., CAVALERI. L.. 

EPKRAUMS, J. J., GOLDING, B., GREENWOOD, A,, GUDDAL, J.. GUNTHER, H., HASSELMANN, K., 
HASSELMANN, S., JOSEPH, P., KAWAI, S., KOMEN, G. J., LAWSON, L., LINNE, H., LONG, R. B., 
LYBANON, M., MAELAND, E., ROSENTHAL, W., TOBA, Y., UJI, T. & VOOGT, W. J. P. DE 1985 
Sea Wave Modeling Project (SWAMP). An intercomparison study of wind wave prediction 
models, Part 1 : Principal results and conclusions. Ocean Wave Modeling. Plenum, 256 pp. 

BAUER, J. & MARTIN, S. 1980 Field observations of the Bering sea ice edge properties during 
March 1979. Mon. Weather Rev. 108, 2045-2056. 

CARTER, D. J. T. 1982 Prediction of wave height and period for a constant wind velocity using the 
JONSWAP results. Ocean Engng 9, 17-33. 

DONELAN, M. A. ,  HAMILTON, J .  & HUI, W. H. 1985 Directional spectra of wind-generated waves. 
Phil. Trans. R .  SOC. Lond. A 315, 509-562. 

FENTON, J. D. 1978 Wave forces on vertical bodies of revolution. J. Fluid Mech. 85, 241-255. 
Fox, M. J. H. 1976 On the nonlinear transfer of energy in the peak of a gravity-wave spectrum 

11. Proc. R. SOC. Lond. A 348, 467483. 
GARRISON, C. J .  1978 Hydrodynamic loading of large offshore structures : three-dimensional 

source distribution methods. In  Numerical Methods in Offshore Engineering (ed. 0. C. 
Zienkiewicz, R. V. Lewis & K. G. Stagg), pp. 87-140. Wiley. 

GOLDING, B. 1983 A wave prediction system for real-time sea state forecasting. &. J. R .  Met. Soc. 
109. 393416. 

HASSELMANN, K. 1960 Grundgleichungen der Seegangsvoraussage. Schiffstechnik. 7, 191-195. 
HASSELMANN, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. 

General theory. J. Fluid Mech. 12, 481-500. 
HASSELMANN, K. 1963 On the non-linear energy transfer in a gravity-wave spectrum. Part 3. 

Evaluation of the energy flux and swell-sea interaction for a Pu’ewmann spectrum. J .  Fluid 
Mech. 15, 385398. 

HASSELMANN, K. 1974 On the spectral dissipation of ocean waves due to white capping. 
Boundary-Layer Met. 6, 107-127. 

HASSELMANN, K., BARNETT, T: P., Bouws, E., CARLSON, H., CARTWRIGHT, D. E., ENKE, K., 
EWING, J .  A,, GIENAPP, H., HASSELMANN, D. E., KRUSEMAN, P., MEERBURG, A,, M ~ ~ L L E R .  P., 
OLBERS, D. J . ,  RICHTER, K.. SELL, W. & WALDEN, H. 1973 Measurements of wind-wave 
growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsch. 
Hydrogr. 2. A 8 (12), 95 pp. 

HASSELMANN, K., ROSS, D. B., MULLER, P. & SELL, W. 1976 A parametric wave prediction model. 
J. Phys. Oceanogr. 6, 200-228. 

HASSELMANN, S. & HASSELMANN, K. 1981 A symmetrical method of computing the nonlinear 
transfer in a gravity-wave spectrum. Hamb. Geophys. Einzelschriften A 52, 138 pp. 

HASSELMANN, S. & HASSELMANN, K. 1985 a Computations and parameterizations of the nonlinear 
energy transfer in a gravity wave spectrum. Part I : A new method for efficient computations 
of the exact nonlinear transfer integral. J. Phys. Oceanogr. 15, 1369-1377. 

HASSELMANN, S. & HASSELMANN, K. 1985 b Computations and parameterizations of the nonlinear 
energy transfer in a gravity wave spectrum. Part 11: Parameterizations of the nonlinear 
energy transfer for application in wave models. J. Phys. Oceanogr. 15, 1378-1391. 

ISAACSON, M. DE ST Q. 1982 Fixed and floating axisymmetric structures in waves. J. Waterway, 
Port, Coastal and Ocean Div. ACCE 108 (WW2), 180-199. 

ISHIMARU, A. 1978 Wave Propagation and Scattering in Random Media. Volume 2 Multiple 
Scattering, Turbulence, Rough Surfaces, and Remote Sensing. Academic. 310 pp. 

JANSSEN, P. A. E. M.. KOMEN, G. J. & VOOGT, W. J. P. DE 1984 An operational coupled hybrid 
wave prediction model. J. Geophys. Res. 89 (C3), 3635-3654. 

JEFFREYS, H. 1962 Asymptotic Approximations. Oxford University Press. 144 pp. 
JOHN, F. 1950 On the motion of floating bodies, 11. Simple harmonic mot,ions. Commun. Pure 

Appl.  Maths 3,  45-101. 



Spectral evolution of wind-generated surface gravity waves 81 

KOMEN, G. J.,  HASSELMANN, S. & HASSELMANN, K. 1984 On the existence of a fully developed 
wind-sea spectrum. J .  Phys. Oceanogr. 14, 1271-1285. 

LEVER, J. H., REIMER, E. & DIEMAND, D. 1984 A model study of the wind-induced motion 
of small icebergs and bergy bits. Proc. Third Intl. Offshore Mechanics and Arctic Engng Syrnp. 

LONGUET-HIGGINS, M. S. 1976 On the nonlinear transfer of energy in the peak of a gravity-wave 

MASSON, D. 1987 Spectral evolution of wind generated surface gravity waves in a dispersed ice 

MILES, J. W. 1971 A note on variational principles for surface-wave scattering. J .  Fluid Mech. 46, 

MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics. Part ZZ. McGraw-Hill. 979 pp. 
PHILLIPS, 0. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part  1. The 

PHILLIPS, 0. M. 1985 Spectral and statistical properties of the equilibrium range in wind- 

V O ~ .  3, pp. 282-290. 

spectrum: a simplified model. Proc. R .  SOC. Lond. A 347, 311-328. 

field. PhD thesis, The University of British Columbia. 95 pp. 

141-149. 

elementary interactions. J .  Fluid Mech. 9, 193-217. 

generated gravity waves. J .  Fluid Mech. 156, 505-531. 
ROBIN, G. DE Q. 1963 Wave propagation through fields of pack ice. Phil. Trans. R .  Soc. A 255, 

3 13-339. 
SARPKAYA, T. & ISAACSON, M. 1981 Mechanics of Wave Forces on Offshore Structures. Van Nostrand 

SNYDER, R. L., DOBSON, F .  W., ELLIOTT, J. A. & LONG, R. B. 1981 Array measurements of 

SQUIRE, v. A. 1983 Numerical modelling of realistic ice floes in ocean waves. Ann. Claciol. 4, 

SQUIRE, V. A. 1984 A theoretical, laboratory, and field study of ice-coupled waves. J .  Geophys. 

SQUIRE, V. A., WADHAMS, P. & MOORE, 6. C. 1986 Surface gravity wave processes in the winter 

TUCKER, W. B., Gow, A. J .  & WEEKS, W. F. 1987 Physical properties of summer sea ice in the 

WADHAMS, P. 1973 Attenuation of swell by sea ice. J .  Geophys. Res. 78 (18), 3552-3563. 
WADHAMS, P. 1975 Airborne laser profiling of swell in an open ice field. J .  Geophys. Res. 80 (33), 

WADHAMS, P. 1978 Wave decay in the marginal ice zone measured from a submarine. Deep-sea 

WADHAMS, P. 1983 A mechanism for the formation of ice edge bands. J .  Geophys Res. 88 (C5), 

WADHAMS, P. 1986 The seasonal ice zone. I n  The Geophysics of Sea Ice (ed. N. Untersteiner), 

WADHAMS, P., SQUIRE, V. A, ,  EWING, J .  A. & PASCAL, R. W. 1986 The effect of the marginal ice 

WEBB, D. J .  1978 Non-linear transfers between sea waves. Deep-Sea Res. 25, 27S298. 
WEHAUSEN, J. V. 1971 The motion of floating bodies. Ann. Rev. Fluid Mech. 3, 237-268. 
WEHAUSEN, J. V. & LAITONE, E .  V. 1960 Surface waves, Encyclopedia of physics, Fluid Dynamics 

Reinhold. 651 pp. 

atmospheric pressure fluctuations above surface gravity waves. J .  Fluid Mech. 102, 1-59. 

277-282. 

Res. 89 (C5), 8069-8079. 

Weddell Sea. AGU fall meeting report, EOS 67 (44), 1005. 

Fram strait. J .  Geophys. Res. 92 (C7), 6787-6803. 

452M528. 

Res. 25, 2340. 

2813-28 18. 

pp. 825-991. Plenum. 

zone on the directional wave spectrum of the ocean. J .  Phys. Oceanogr. 16, 358-376. 

111, 9, (ed. S. Flugge), pp. 44G778. Springer. 




